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TECHNICAL NOTE NO. 1792

STUDY BY THE PRANDIL-GLAUERT METHOD OF COMPRESSIBILITY
EFFECTS AND CRITICAL MACH NUMBER FOR ELLTPSOIDS OF
VARIOUS ASPECT RATTIOS AND THICKWESS RATIOS

By Robert V. Hess and Clifford S. Gardner
SUMMARY

By the use of a form of the Prandtl-Glauert method that 1s valid
for three-dimensional flow problems, the value of the maximum incremental
velocity for compressible flow about thin elllipsolds at zero angle of
attack 1s calculated as a function of the Mach number for various aspect
ratios and thickness ratios. The critical Mach numbers (within the
accuracy of the Prandtl-Glauert method) of the various ellipsoids are
also determined. The results indicate an increase in critical Mach
number with decrease 1n aspect ratio which is large enough to explain
experimental results on low-aspect-ratio wings at zero 1lift.

INTRODUCTION

Recent tests (references 1 and 2) have shown that an appreciable
increagse in the critical Mach number, together with other improvements
‘of the aerodynamic characteristics at supercritical Mach numbers, results
from the use of wings of very low aspect ratio. These improved charac-
teristics have been somewhat qualitatively ascribed to "three-dimensional
relief," although no quantltative theoretical discussion has yet been
provided.

In the present paper an effort is made to provide such a study by
considering the flow, at zero angle of attack, about a series of thin
ellipsolds of various aspect ratios and thickness ratios. Ellipsoids
were chosen because they are amenable to calculation. Although they
differ appreciably from the wings of reference 1, which had an NACA
0012 airfoil section and rectangular plan form, ellipsoids should never-
theless show similar aspect-ratio effects. The calculations were made
for ellipsoids of thickness ratios 0.10, 0.15, and 0.20, and for the
entire range of aspect ratios from the elliptic cylinder to the
ellipsoid of revolution.

The compressibility effects were computed by the use of a form of
the Prandtl-Glavert method that is valid for three-dimensional flow




problems.
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The method has been given by Gbthert (reference 3) without,

however, very expliclt mathematical proof. Another correct statement

of the three-dimensional form of the Prandtl-Glauert method was glven
earlier by A. Busemann in reference 4, where, however, no formulas were
given. Since the methods that have been commonly used (see, for example,
references 5, 6, and 7) are applicable only to two-dimensional problems,
a detalled proof of the method correct for three-dimensional flow 1is
included in the appendix. A brief discussion of the accuracy of the
Prandtl-Glavert method, as applied to ellipsoids, is also given. This
work was completed in April 1946.

X, vy, 2

SYMBOLS

free-stream velocity
velocity of sound in free stream
free-stream Mach number (U/C)

ratio of specific heats (7 = 1.4k for air)

rectangular coordinates
thin body
veloclty potential

x-, y-, and z-components of incremental
velocity for compressible flow about B

body obtained by stretching B 1n direction
of x-axis by the factor 1/B

x~, y-, and z-campecnents of incremental
velocity for incampressible flow about B'

maximum semichord of ellipsoid
semispan of ellipsoid

maximum semithickness of ellipsoid
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Subscript:
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value of u when the Mach number is equal to M

value of u for incompressible flow (M = 0)

Thickness
thickness ratio —————
Chord

value of ratio of incremental velocity to
free-stream velocity for compressible
flow having Mach number M about a body
having thickness ratio €

value of ratio of incremental veloclty to free-
stream velocity for 1lncompressible flow about
a body having thickness ratio ¢

maximum value

METHODS OF CALCULATION

The Prandtl-Glauert method for three-dimensional flow.- The

Prandtl-Glauvert methed is used in the present paper in the following

form:

The incremental velocitles at a point P

of a three-dimensional

compressible flow field about a thin body B may be obtained in three

gteps:

(1) The x-coordinates of all points of B are increased by
the factor l/B, where

and where the x-axis i1s in the stream direction.

B= N1 -

This transformation

tekes B into a stretched body B'.
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(2) The incremental velocities u', v', w', in the direction of
the x-, y-, and z-axes, respectively, at the point P' in the flow
field of B' corresponding to the point P in the flow fleld of B
are calculated as though B' were in an incompressible flow having the
same free-stream velocity as the original campressible flow.

(3) The values u, v, and w of the Ilncremental velocities at the
point P 1in the campressible flow field of the original unstretched
body are then found by the equations

o
]
=t

<
]
™|~ W
' S
) <

A derivation of this form of the Prandtl-Glauert method is given
in the appendix. The method in essentially this form has been given by
Gothert (reference 3) without, however, a very clear proof. (GSthert
prefers to shrink the lateral coordinates of the body by the factor B
rather than to expand the coordinate in the stream direction by the
factor l/B; obviously the two procedures lead to the same result.)
Prandtl (reference 5) and Von Kdrmen (reference 6) state the method in
& form that 1s valid for two-dimensional flows but in general i1s incorrect
for three-dimensional flows. Goldstein and Young (reference 7) also give
a discussion leading to results that are correct only for two dimensions.
A discussion of the reasons for the failure of these commonly used
methods for three-dimensional flow problems is included in the appendix.

Calculation of incremental velocity for compressible flow about
ellipsolds.- In order to determine, by the Prandtl-Glauert method, the
incremental velocity on the surface of an ellipsoid having semlaxes a,
b, and ¢ (where a -1is the length of the semiaxis in the stream direc-
tion), the incremental velocity 1s calculated for a stretched ellipsoid

having semiaxes a', b, and ¢ (where a' = 2 4nen incompressible

flow having the same stream velocity) and the result is multiplied

by l/Bg- For incompressible flow about the stretched ellipsoid, the
veloclty potential on the surface of the ellipsoid is given by

%o

Qo = Ux
2 - a,
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where

CL (2 V@2 ) (bv2 DGR,

(Sée, for exemple, reference 8.) The incremental velocity at x = O
(half-chord line on the stretched ellipsoid in incompressible flow) is
then given by

This value is the maximum value of u' (reference 8) and evidently
is the same at all points on the half-chord line. The incremental
velocity at the half-chord line for the compressible flow a&bout the
original unstretched ellipsoid is given by

1 . 1 Co (1)
u = ﬁ2 u = 82 5 o U
(o)

Various formulas are necessary for the evaluation of the integral o

when a'>b>c, b>a'>c, or a'> b =c¢ (ellipsoid of revolution).

For a'> b> ¢, the value of ao_ is given by the formula

(o)

o = 2a'be (
(g'g - bé) \A;E;tfzé

where F and E are incomplete elliptic integrals of the first and
second kind, respectively, defined as follows:

? av
F =
0 \/l - x° sin® ¥

o
T = \/1 - k2 gin?V 4y
0

F - E) (2)
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where

and

For b > a'>c, the value of «

o 18 glven by the formula

2a'bc ng - ¢° a'2 - 02 2ce

E-| ———]|F| - —— (3)

ay =
(bg - a'%) <§'2 - c?) p° - o° al® - ¢°

where F and E are defined by

and

b2 - &2
b

sin o

Equation (2) is derived from the first equation given in equa-
tions (5.13) of reference 8 by substituting a' for a and by using
the expression for k in terms of a', b, and c¢. Equation (3) 1s
derived from the second equation given in equations (5.13) of reference
by interchanging a and b, substituting a' for a, and using the
expression for kX 1n terms of a', b, and c.

For a'> b =c¢ (ellipsold of revolution), ay 1s given by the
equation

axr

0 <a'2 + x2>3/2<b9 4 x)

a, = a'p°
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which resolves 1into

2
1l -e 1+ e

= 1 -2
ao 93 <Oge 1-6e e>

qa'g - b2
6= ——

If this value for a, is substituted in equation (1), the incremental

where

~velocity at the half-chord line for the ellipsoid of revolution is found

to be
1 e
logg I %" 2
U= _E 2e 1+ e
B - log
o) (5]
1-e l-e

The limiting case of infinite aspect ratio (elliptic cylinder) was
treated by the use of formulas for the ellipse in two-dimensional flow
(reference 9).

Calculation of the critical Mach number.- For flow about a two-
dimensional body, the free-stream Mach number for which sonic speed is
first reached at some point on the surface 1s called the critical Mach
number, because of the development of a shock and the accompanying
deterioration of the aerodynamic characteristics shortly after this
Mach number is exceeded. If an extension of the definition of the
critical Mach number to the general three-dlmensional body 1s desired,
the definition appears, at first sight, to require some revision, since
for the general three-dimensional case the shock formation on parts of
the body may occur along lines yawed with respect to the free-stream
velocity (reference 10). The boundary lines of the supersonic regions
(sonic lines) must, however, always contain a portion that is normal
to the free-stream velocity and thus the definition of the critical
Mach number for the two-dimensional case (infinite unyawed cylinder)
may be extended without modification to the general three-dimensional
case. For the special three-dimensional case of the infinite yawed
cylinder, the portions of the boundary lines of the supersonlc regions
that are normal to the free-stream velocity are represented by two
points at infinity, only one of which (at the downstream end) has the
necessary qualities for accumulating disturbances, that is, for shock
formation. It can be seen that for the general three-dimensional body
the critical Mach number, although still defined in the same manner as
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for the two-dimensional body, largely loses its critical significance,
since the shock may begin to form over only a very small part of the
surface, so that its occurrence does not necessarily imply an imminent
deterioration of the aerodynemic characterlstics of the body.

For the specilal case of the unyawed ellipsold considered in the
present paper, however, no appreciable analysis of shock formatlion or
shock extent along the lines Jjust indicated seems to be required. As
is shown in the section "Calculation of the Incremental Velocity for
Compressible Flow about Ellipsoids", the maximum veloclty for an unyawed
ellipsoid is in the stream directlon and occurs simultaneously at all
points along the half-chord line. Sonic velocity 1s thus reached
simultaneously along & line that extends across the entire span of the
body and is normal to the stream direction. These conditions also
exist in the case of the unyawed infinite cylinder, that is, the two-
dimensional body-. '

The critical Mach number of the ellipsoid, within the accuracy of
the Prandtl-Glauert method, was accordingly determined by solving
graphically the equation

y - 1 2]
1+ > M

- 1
u(M)='ﬁ --'—7-—+—:—L——-l

2

where (M) 1is the ratio of the incremental velocity at the half-chord
line to the stream velocity at the Mach number M.

Accuracy of the Prandtl-Glauert method.- The Prandtl-Glauert method
is based on the assumption of small perturbations. Consequently, near
the nose of the ellipsoids discussed in the present paper, where the
assumption of small perturbations 1s violated, the results gilven by the
Prandtl-Glauert method cannot be expected to be reliable. More reliable
values, however, should be obtained for the maximum incremental velocity,
which occurs at the half-chord line. The accuracy of the Prandtl-Glauert
approximation for the maximum incremental velocity may be estlmated by
comparison with more exact solutions of the compressible flow problem.

An iteration method in which the Prandtl-Glauert method is used as the
first approximation has been proposed by Busemenn (reference 11). The
first and second approximations have been calculated by Hentzsche and
Wendt for the elliptic cylinder (reference 12) and by Schmieden and
Kawalki for the ellipsold of revolution (reference 13). Calculation

of the maximum incremental velocity for the elliptic cylinder having
thickness ratio 0.20 by a formula for the second approximation given

in reference 11 shows that the value glven by the Prandtl-Glauert method
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at a Mach number of 0.8 is almost 20 percent lower than the value given

by the second approximation. For the ellipsoid of revolution, however,
the value of the maximum incremental velocity given by the Prandtl-Glauert
method agreed with the value glven by the second approximetion to within

5 percent at a Mach number of 0.8 for thickness ratios up to 0.30. Although
the second approximation is not the exact solution, it indicates that the
error involved in using-the Prandtl-Glauert method to estimate the maximum
incremental velocity for ellipsoids having a given thickness ratio is
greatest for the limiting case of the elliptic cylinder (A = «) and
very small for the ellipsoid of revolution, which has a very low aspect
ratio. The error may be expected to be intermediate in magnitude for

- Intermediate values of the aspect ratio and to decrease with aspect ratio.
The reduction of error of the Prandtl-Glauert method with a decrease in
aspect ratio was to be expected, as the incremental velocities are smaller
for ellipsoids having low aspect ratio.

RESULTS AND DISCUSSION

Results.- Figures 1 to 3 show the value of the velocity

ratio u = E%gz at the half-chord line plotted against the Mach number
for ellipsolds at zero angle of attack for various aspect ratios and sec-
tion thickness ratios equal to 0.10, 0.15, and 0.20. In the seme figures

the sonic veloclty boundary having the equation

is plotted for air. The abscissa of the intersection of this boundary line
with the curve of U plotted against M for any aspect ratio is the
critical Mach number (within the accuracy of the Prandtl-Glauert method).
In order to show the effect of compressibility more directly, the

ratlo %%%% of maximum incremental velocity for compressible flow to

the maximum Incremental veloclty for incompressible flow for the same
free-stream velocity is plotted agalnst the Mach number in figures 4

to 6 for thé same aspect ratios and thickness ratios. Similar curves

for the ellipsoid of revolution, which is a special case of the ellipsoid
having three unequal axes, are plotted for the same thickness ratios

in figures 1 to 6. Figure T presents curves of critical Mach number
against aspect ratio for thickness ratios of 0.10, 0.15, and 0.20.

Three-dimensional relief.- It may be seen from figures 1 to 3 that
the three-dimensional relief, that is, the difference between the velocity
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on the ellipsoid and the velocity on the corresponding ellipsold of infinite
aspect ratio (elliptic cylinder), increases with a decrease in the aspect
ratio. This increase has two causes:

(1) For a flow at small velues of M (incampressible flow), the
relief effect increases with a decrease 1in the aspect ratio.

(2) For larger values of M (campressible flow), an additional
relief effect occurs with a decrease in the aspect ratio because of the
fact that the compressibility effect (increase of incremental veloclty
with an increase in the Mach nmumber) decreases with a decrease in the
aspect ratio. (See figs. 4 to 6.) It may be seen that this additional
three-dimensional relief increases most rapldly at high Mach numbers.

Figures 1 to 6 show that the compressibility effect on the maximum
incremental velocity is greatest for A equal to infinity (infinite
elliptic cylinder) and is smallest for the ellipsoild of revolution. The
compressibility effect on the meximum incremental veloclty for the elliptic

—1
Vi-2
usual form of the Prandtl-Glauert method in two dimensions. The com-
pressibility effect on the maximum incremental veloclty for the elllpsold
of revolution 1s small in comparison with that of the elliptic cylinder.
In fact, as the thickness ratio of any type of body of revolution
approaches zero, the campressibllity correction factor approaches unlty,
for in this limit the incremental velocity in incampressible flow 1is
proportional to the square of the thickness ratio, so that the effect of
stretching the body (first step of Prandtl-Glauert method, see appendix)
is exactly compensated for by the multiplication of the incremental

velocities by 1/p° (third step of the Prandtl-Glauert method). For
ellipsoids of practical thickness ratios, however, the incremental
veloclty varies more slowly than the square of the thickness ratlo.

The compressibility effect for the ellipsold of revolution (figs. 4 to 6)
is thus appreciable at high Mach numbers. For example, for a thickness
ratio of 0.20 and at a Mach number of 0.8, the compressibility effect
amounts to about 30 percent of the incremental velocity in incompressible
flow.

cylinder 1s proportlonal to , which is in agreement with the

The effect of the thickness ratio on the three-dimensional rellef
may be seen by a comparison of figures 1, 2, and 3. From figure 1 it
may be seen that, for a thickness ratio of 0.10, at a Mach number of 0.75,
the maximum incremental velocity for A =2 1s 76 percent of the maximum
incremental veloclty for A =®. From figure 3, on the other hand, it
may be seen that, for a thickness ratio of 0.20, at a Mach number of 0.75,
the maximum incremental velocity for A =2 1s 75 percent of the maximum
incremental velocity for A = o. Thus, an increase in the thickness ratio
causes only a very small increase in the three-dimensional relief.
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Critical Mach number. Figures 1, 2, 3, and T indicate that an increase
in the critical Mach number of an ellipsold at zero 1lift may be obtained
by decreasing the aspect ratio. For example, for ellipsolds having a
thickness ratio of 0.10, a decrease in the aspect ratio fram *® to 2
causes the critical Mach number to increase from 0.827 to 0.857 (a Mach
number increase of 0-03)- For a thickness ratic of 0.20, a decrease in
the aspect ratio from o« to 2 causes the critical Mach number to increase

. from 0.741 to 0.783 (about 0.04). Although ellipsoids having greater

thickness ratio have lower critical Mach numbers, a decrease 1n the
aspect ratio is slightly more effective in increasing the critical Mach
numbers for ellipsoids of greater thickness ratio. Figure 7 indicates
that only a large reduction in aspect ratio will cause a significant rise
of the critical Mach number.

Comparison with test results on low agpect ratio wings.- Figure 6
of reference 1 shows the minimum drag coefficient (CD for zero liff)

plotted against the Mach number for wings having an NACA 0012 section

and various aspect ratios. The critical Mach number for any aspect

ratio may be estimated roughly as the Mach number for which the drag
coefficient first begins to rise. The rough estimate of the critical :
Mach numbers obtainable by this consideration is not sufficlently accurate
to warrant comparison of the numerical values with the numerical values
of the critical Mach number obtained 1n the present paper for thin
ellipsoids. Comparison of the numerical results is, moreover, not
warranted inasmuch as the wings of reference 1 dld not have an elliptic
section and furthermore had a rectangular plan form. A qualitative
comparison may be made, however, between the results of the present

paper and those of reference 1. The increase in critical Mach number
with decrease in aspect ratio indicated in figures 1, 2, 3, and 7 of

the present paper is considered sufficiently large to explain the
corresponding effect indicated in figure 6, reference 1.

- It is mentioned in reference 1 that the Mach number for a significant
rige in the drag coefficient is approximately 0.l higher for an aspect
ratio of 2 than for an Infinite aspect ratio. This value 1s appreciably
higher than the 1ncrease in critical Mach number due to a decrease 1n the
aspect ratio. Since, for low-aspect-ratio wings, the drag coefficient
increases only gradually after the critical Mach number 1s reached, the
critical Mach number for a wing having low aspect ratio does not indicate
g0 critical a change in the flow phenomena as the critical Math number
for a wing having high aspect ratio. It is thought that the smaller rate
of increase of the drag coefficient for wings having low aspect ratio is
due to the fact that, at the critical Mach number, the rate of increase
with Mach number of the incremental velocity is less than for high aspect
ratios, as may be seen fram figures 1 to 3.
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CONCLUSIONS

A study by the Prandtl-Glauert method of compressibility effects
and critical Mach number for ellipsoids of various aspect ratios and
thickness ratlos indicated the followlng conclusions:

1. The flow about the unyawed ellipsoid is analogous to that about
the infinite unyawed cylinder in that sonic velocity 1s reached simul-
taneously along a line that extends across the entire span of the body
and is normal to the stream directionm.

2. The critical Mach number for a thin ellipsoid may be predicted
with good accuracy by means of the Prandtl-Glauert method, and the
accuracy Increases with decrease in aspect ratio.

3. The compressibility effect on the flow about an ellipsoid decreases
as the aspect ratio decreases.

4. The three-dimensional relief for ellipsolds 1s essentially
independent of the thickness ratio, for thickness ratios from 0.10 to 0.20.

5. For ellipsoids of thickness ratio 0.20, the critical Mach number
increases by about 0.04k when the aspect ratio is changed from « to 2;
for ellipsolds of thickness ratio 0.10 the increase is 0.03.

6. The calculated increases in critical Mach number are sufficiently
large to explaln the experimentally observed increases in the Mach number
at which the drag first begins to rise.

T. The experimentally indicated reduced rate of drag rise for low-
aspect-ratio wings at zero 1lift as campared with that for wings having
infinite aspect ratio may be explained qualitatively on the basls of the
results obtained for the three-dimensional relief for ellipsoids.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., April 23, 1946
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APPENDIX
THE PRANDTL-GLAUERT METHOD FOR THREE-DIMENSIONAL FLOW

A derivation of the Prandtl-Glauert method for three-dimensional flow.-
A brief derivation of a form of the Prandtl-Glauert method correct for
three dimensions may be given as follows: A first-order approximation to
the subsonic compressible flow about a thin body B, the surface of which
has the equation

S(x, y, z) =0

may be obtalned by finding a solution of the linearized differential
equation for the potential ¢ of the incremental velocities,

2 —
BOyy + Oyy +@,, = O (a1)
where the x-axis is in the stream directlion and the incremental

velocities @, ¢y, and @Z are small compared with the stream

velocity U. At all points on the surface of B, the potential ¢ must
satisfy the boundary condition

(U+ @) 8, + ®S, + @8, =0 (42)

which states that the flow is tangential to B. Since B 1s assumed
thin, Sy 1is emall compared with Sy and S, consequently the second-

order term ¢kSX may be neglected, and the boundary condition becomes

USy + @Sy + $pS, = O

In order to solve the boundary-value problem given by equations (Al)
and (A2) in terms of incompressible flow, the following transformation of
variables is used: :

X
! = =
B

Bo

S
1]
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With this transformation equations (Al) and (A2) become, respectively,

+ ¢'Zz =0 . (Ak)

(85)

1
o

! !
USX' + 0 ySy + O ZSZ =

Fquations (A4) and (A5) are, respectively, the differential equation and
boundary condition for the potential @' of the incremental velocities
of an incompressible flow with free-stream velocity U, in the x', y, 2
space, about a thin body B', the surface of which has the equation

s(px', y, z) =0

The incremental velocities in the compressible flow are thus
given by

! t
u = q) = EE q) [—— B—é u
— - ._.l — _l
v = pr = B CP' = B v! (A6)
Lo _ i. !
W = cpz = Eq) 7 = B w

where u, v, and w and u', v', and w' are the incremental

velocities at corresponding points in the compressible flow about B
and the incompressible flow about B', respectively.

The foregoing analysis establishes the Prandtl-Glauert method
for thres-dimensional flow in the following form: The lncremental
velocities at a point P of a three-dimensional compressible flow
field about a thin body B may be obtained in three steps:

(1) The x-coordinates of all points of B are increased by the

factor 1/B, where
B = Vl - M

and where the x-axis is in the stream direction. This transformation
takes B into a stretched body B'.

(?) The incremental velocities u', v', w', in the direction of
the x-, y-, and z-axes, respectively, at the point P' in the flow
field of B' corresponding to the point P in the flow field of B
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are calculated as though B' were in an incompressible flow having the
same free-stream velocity as the original compressible flow.

(3) The values u, v, and w of the incremental velocities at the

point P 1n the compressible flow field of the original unstretched -
body are then found by the following equations: :

L

u = - u

v = %% v!

N —
B

Thus far 1t has been shown that, through the transformation given
in this paper, a compressible flow that satisfies the boundary conditions
for the body B 1is transformed into an incompressible flow satisfying
the boundary conditions for the stretched body B'. It can be shown
further that the stream lines of the compressible flow about B are
transformed into stream lines of the incompressible flow about B'.
Because of this fact, the method has been referred to in the literature
(for example, reference 4) as the "streamline-analogy' method.

The proof is obtained simply by applying the transformations (A3)
and (A6) to the equations for the streamlines of the incompressible
flow about the stretched body B'

_____ ‘ (AT)

The application of the transformations results in the equation of
the streamlines for the compressible flow about the body B

= _ o _ 2t (A8)

. Failure for three-dimensional flow problems of the commonly stated
forms of the Prandtl-Glauvert method.- According to “the form of the

Prandtl-Glauert method given by Prandtl (reference 5) and Von Kérmén

(reference 6), the incremental velocitles for a compressible flow about

a thin body B are the same as the incremental velocities of corresponding -

points for incompressible flow having the same free-stream velocity about

a body obtained by expanding B in the directions normal to the free-

stream direction by the factor l/B- That is, for bodies of revolution,

or two-dimensional bodies,
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u u/l
U (G} M) "U<B€’9

According to Gothert's method, however,

e, M ==

u
- B U (Be, 0) (29)

/
Thus, Prandtl's and Von Kermén's method is valid only if

ufl _lu
ﬁ(asi O) = BQU (ﬁG) O)

that is, if and only if the incremental velocity for incompressible

flow about the bodies under consideration is proportional to the thickness
ratio. This relation is approximately valid for thin two-dimensional
bodies, so that the method of Prandtl and Von Kérmén may be expected

to be valid for two-dimensional flows. The relation is not true in
general for three-dimensional bodies; for example, for a very thin

body of revolution the incremental velocity is more nearly proportional
to the square of the thickness ratio than to the first power.

Von Ké}méh approaches the problem by meking the transformation

y' = By
2' = Bz
' =0

Under this transformation the linearized equation of compressible

flow goes into Laplace's equation; however, the transformed boundary
condition is not satisfied on the surface of the transformed (contracted)
body but on the surface of an expanded body. Thus, the boundary condi-
tion 1s not satisfied on the boundary but at points near the boundary.
This procedure is appliceble to two-dimensional problems (as, for example,
in the thin-wing theory, reference 14), because the velocity increments
induced by the equivalent line distribution of singularities vary only
slowly in the neighborhood of the line of singularities. For a body

of revolution, however, the velocity increments induced by a line of
singularities go to infinity at the line of singularities; for such
bodles, accordingly, the location of the point at which the boundary
condition is satisfied is important.

According to Goldstein and Young (reference T), "in compressible
flow the pressure increase at any point of the body 1is l/B times the
pressure increase in incompressible flow at the same point. That is,
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(e, M) % (¢, 0)

Z
U

=gis

Comparison of this relation with equation (A9) shows that the Goldstein-
Young method is also valid for two-dimensional problems but gives an
incorrect result for three-dimensional problems.
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